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Abstract. A generalization of the pure site and pure bond percolation problems in which pairs of nearest
neighbor sites (site dimers) and linear pairs of nearest neighbor bonds (bond dimers) are independently
occupied at random on a square lattice is studied. We called this model as dimer site-bond percolation.
Motivated by considerations of cluster connectivity, we have used two distinct schemes (denoted as S ∩ B
and S ∪ B) for dimer site-bond percolation. In S ∩ B (S ∪ B), two points are said to be connected if a
sequence of occupied sites and (or) bonds joins them. By using finite-size scaling theory, data from S ∩ B
and S ∪ B are analyzed in order to determine i) the phase boundary between the percolating and non-
percolating regions and ii) the numerical values of the critical exponents of the phase transition occurring
in the system. The results obtained are discussed in comparison with the corresponding ones for classical
monomer site-bond percolation.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions
– 68.35.Rh Phase transitions and critical phenomena – 05.10.Ln Monte Carlo methods

1 Introduction

The percolation problem has been a focal point of sta-
tistical mechanics research for several decades [1–6]. One
reason for this current interest is that it is becoming clear
that generalizations of the pure percolation problem are
likely to have extensive applications in the description of
various phenomena in nature. Although it is a purely ge-
ometric phenomenon, the phase transition involved in the
process can be described in terms of the usual second or-
der phase transition. This mapping to critical phenomena
made percolation a full part of the theoretical framework
of collective phenomena and statistical physics.

The central idea of the pure percolation theory is based
in finding the minimum concentration of elements (sites
or bonds) for which a cluster extends from one side to
the opposite one of the system. This particular value of
the concentration rate is named critical concentration or
percolation threshold and determines a phase transition
in the system. Thus, in the random percolation model, a
single site (or a bond connecting two sites) is occupied
with probability p. For the precise value of pc, the per-
colation threshold of sites (bonds), at least one spanning
cluster connects the borders of the system (indeed, there
exist a finite probability of finding n (> 1) spanning clus-
ters [7–10]). In that case, a second order phase transition
appears at pc which is characterized by well defined criti-
cal exponents.

More general percolation problems can be formulated
by assuming that both sites and bonds are randomly
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and independently occupied with occupancy fractions ps

and pb, respectively. We may then define site–and–bond
(S ∩B) and site–or–bond (S ∪B) percolation: in S ∩B, a
cluster is considered to be a set of occupied bonds and
sites in which the bonds are joined by occupied sites,
and the sites are joined by occupied bonds. S ∩ B rep-
resents the well-known site-bond percolation, which has
many applications in different fields. For instance, it was
used to describe the sol-to-gel transition (gelation) of poly-
mers [11]. In this model, bonds represent chemical bonds,
occupied sites represent monomers, and empty sites repre-
sent solvent molecules. Sites are correlated as in a lattice
gas model of a binary mixture. In S ∪ B, a bond or site
contributes to cluster connectivity independently of the
occupation of its endpoints.

The phase diagram of the site-bond system in
the ps − pb parameter space has been widely stud-
ied. Thus, the model was mentioned at first by Frisch
and Hammersley [12]. Agrawal et al. [13] and Nakanishi
and Reynolds [14] showed, by using a series method and
position-space renormalization group, respectively, that
the critical exponents of pure site percolation are also valid
for site-bond percolation. Later, Yanuka and Englman [15]
proposed a equation for the critical curve separating the
sol-to-gel transition in the site-bond percolation model,
for square, triangular, simple cubic and face centered cu-
bic (fcc) lattices. More recently, Tarasevich and van der
Marck [16] presented a very complete and systematic
study, where site-bond percolation thresholds were cal-
culated by means of numerical simulations in many lat-
tices in two to five dimensions. In addition, the line of
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Fig. 1. Typical phase diagram (in the ps−pb parameter space)
of site-bond percolation (S ∩ B) and site-or-bond percolation
(S ∪ B) on two-dimensional lattices.

threshold values (critical curve) was parametrized in excel-
lent agreement with the numerical values. A typical phase
diagram of site-bond percolation (S∩B) and site-or-bond
percolation (S ∪ B) on two-dimensional lattices is shown
in Figure 1. The critical curve corresponding to the S ∩B
problem, shown as a solid line, separates the percolating,
in which a gel is formed, and the non percolating area,
the sol phase. On the other hand, the percolating and the
non-percolating region corresponding to the S ∪ B prob-
lem are separated by the dashed critical curve. Standard
site (bond) percolation is recovered as the pb = 1 (ps = 1)
case of the S ∩ B problem, as well as pb = 0 (ps = 0)
case of the S ∪ B problem. Note that pc

s and pc
b repre-

sent the percolation thresholds of standard site and bond
percolation, see Figure 1.

Other generalizations of the pure percolation model
have been performed by introducing a sort of correlation
between the occupation probabilities of adjacent sites and
bonds which are usually grouped by the named correlated
percolation. Among them, one of the most studied is the
so-called directed percolation, or percolation with a spe-
cial direction along which the activity can only propagate
one way but not the other [17–21]. In spite of all the dif-
ferences among generalizations, one common feature re-
mains in most of them: the element deposited occupies
only one site (bond) in the lattice. On the contrary, there
have been a few studies devoted to generalize the pure
percolation model, by including deposition of elements oc-
cupying more than one site (bond) [22–29]. Very recently,
the pure site and the pure bond percolation of polyatomic
species have been studied by using Monte Carlo (MC) sim-
ulations [30,31]. In both cases, the dependency of the per-
colation threshold with the size of the element deposited
was discussed.

From an experimental point of view, numerous studies
show that on some kinds of metal surfaces, molecular ad-
sorption is the initial step and is followed by dissociation.
Among them, the oxidation of carbon monoxide, which is
one of the most extensively studied heterogeneous cataly-

sis reactions [32]; the dissociative chemisorption of N2 on
Fe(111) [33], O2 on Pt(111) [34], O2 on Ir(111) [35], etc. In
all cases, when the diatomic molecule (O2, N2) dissociates,
it is broken into two monomers, each of which occupies a
site. The distributions of such dissociated monomers and
the structure of the clusters composed of them are im-
portant in the catalytic processes. Because the dimers are
randomly placed on the lattice and randomly dissociate,
the dissociative adsorption is a spatial random process.
Therefore, it can be clearly illustrated by dimer percola-
tion models. In this sense, Gao et al. [29] investigated the
process of dissociative adsorption of dimers and studied
the percolating properties of the dissociated monomers as
a function of both the concentration of dimers and the dis-
sociation probability. A phase diagram separating a per-
colating from a non-percolating region was obtained.

In all previously mentioned cases, the surface was
considered to be chemically homogeneous and smooth.
However, i) for many real systems, the most important
physical properties depend on the detailed geometry of
the substrate, and ii) in contrast to the statistics for the
simple particles, the degeneracy of arrangements of dimers
is strongly influenced by the structure of the lattice space.
Then, it is of interest and of value to inquire how a specific
lattice structure influences the main percolation proper-
ties of adsorbed dimers. In this sense, the site-bond per-
colation models may mimic, to a rough approximation,
more general heterogeneous surfaces, where some bonds
have been removed and the connectivity varies from site
to site. In addition, in the best knowledge of the authors,
there is still a lack of systematic studies on site–and–bond
(S ∩B) and site–or–bond (S ∪B) percolation in presence
of multiple occupation of sites (bonds).

In this context, the aim of the present paper is (a) to
determine, via MC simulations and finite-size scaling the-
ory, the phase diagram in the ps −pb space for site dimers
and linear bond dimers independently and randomly de-
posited on a square lattice and (b) to verify the universal-
ity class of the phase transition involved in the problem.
The proposed system is the simplest model including the
essential physics of (S ∩ B) and (S ∪ B) percolation with
multiple occupation of sites (bonds).

2 The model

Let us consider a periodic square lattice of linear size L
on which site dimers and bond dimers are independently
deposited at random. The procedure is as follows: 1) a
pair of nearest neighbor sites is randomly selected; if it
is vacant, the site dimer is then adsorbed on those sites.
Otherwise, the attempt is rejected; and 2) a pair of near-
est neighbor bonds (aligned along one of the lattice axes)
is randomly chosen; if it is vacant, the bond dimer is then
dropped onto the lattice. Otherwise, the attempt is re-
jected. In any case, the procedure is iterated until Ns site
dimers and Nb bond dimers are adsorbed and the desired
concentrations (ps = 2Ns/L2, pb = Nb/L2) are reached.

In the filling process, objects of finite size (dimers)
are randomly deposited (irreversibly adsorbed) on an
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L

Fig. 2. Rules for the mapping L → L′ from an original site-
bond lattice L to an effective bond lattice L′ for a) S ∩B and
b) S ∪ B.

initially empty substrate or lattice with the restriction
that they must not overlap with previously added objects.
The quantity of interest is the fraction of total site [bond]
lattice, ps(t) [pb(t)], covered at time t by the deposited
objects. Due to the blocking of the lattice by the already
randomly adsorbed elements, the limiting or “jamming
coverage”, pj

s = ps(t = ∞) [pj
b = pb(t = ∞)], is less

than that corresponding to the close packing (pj
s [pj

b] < 1).
Consequently, ps [pb] ranges from 0 to pj

s [pj
b] for objects

occupying more than one site and the total area in the
ps − pb phase diagram is pj

sp
j
b.

In order to calculate the percolation thresholds, we
can now think of a mapping L → L′ from the original
site-bond lattice L to an effective bond lattice L′ where
each bond and its endpoints sites of L transforms into an
bond one of L′. The rules for the mapping depend on the
studied problem. Thus, for site–and–bond percolation (see
Fig. 2a):
i) each empty bond of L transforms into an empty one

of L′;
ii) each occupied bond with one or two empty endpoint

sites of L transforms into an empty bond in L′; and
iii) each occupied bond with its occupied endpoint sites

of L transforms into an occupied bond of L′.
On the other hand, for site–or–bond percolation (see

Fig. 2b):
i) each occupied bond of L transforms into an occupied

one of L′;
ii) each empty bond with one or two empty endpoint sites

of L transforms into an empty bond in L′; and
iii) each empty bond with its occupied endpoint sites of L

transforms into an occupied bond of L′.
Once the mapping is completed, we use the standard

Hoshen and Kopelman algorithm [36] for studying bond
percolation on L′. The percolation threshold in the origi-
nal and effective lattice must be equal.

3 Finite-size scaling analysis

As the scaling theory predicts [5], the larger the system
size to study, the more accurate the values of the thresh-
old obtained therefrom. Thus, the finite-size scaling the-
ory give us the basis to achieve the percolation threshold

Fig. 3. Fraction of percolating lattices as a function of the con-
centration pb. Different criteria, U (triangles), I (circles) and A
(squares), are used for establishing the spanning cluster. Open
symbols represent curves for ps = 0.85 while filled symbols de-
note the case ps = 0.80. Horizontal dashed lines show the RX∗

universal points. Vertical dashed lines denote the percolation
threshold in the thermodynamic limit L → ∞.

and the critical exponents of a system with a reasonable
accuracy. For this purpose, the probability R = RX

L (p)
that a lattice composed of L × L (2L × L) sites (bonds)
percolates at concentration p can be defined [2]. Here,
as in references [37,38], the following definitions can be
given according to the meaning of X : a) RI

L(p) = the
probability of finding a cluster which percolates both in a
rightward and in a downward direction; b) RU

L (p) = the
probability of finding either a rightward or a downward
percolating cluster and c) RA

L(p) ≡ 1
2

[
RR

L(p) + RD
L (p)

] ≡
1
2

[
RI

L(p) + RU
L (p)

]
.

In the MC simulations, each MC run consists of the
following steps: (a) the construction of the lattice for the
desired fractions ps and pb of site dimers and bond dimers,
respectively; (b) the mapping from the original site-bond
lattice to the effective bond lattice; and (c) the cluster
analysis by using the Hoshen and Kopelman algorithm [36]
on the effective bond lattice. In the last step, the existence
of a percolating island is verified. This spanning cluster
could be determined by using the criteria I, U and A. n
runs of such two steps are carried out for obtaining the
number mX of them for which a percolating cluster of the
desired criterion X is found. Then, RX

L (ps, pb) = mX/n
is defined and the procedure is repeated for different both
values of (ps, pb) and lattice sizes. A set of n = 5 × 104

independent samples are numerically prepared for each
pair (ps, pb) and L (L = 16, 32, 48, 64, 80, 96, 112). From
the point of view of calculations, we set ps = constant
and vary pb. The critical point corresponding to pb = pj

b
is obtained for that fixed pb and variable ps.

In Figure 3, the probabilities RI
L(pb) (circles), RU

L (pb)
(triangles) and RA

L(pb) (squares) are presented for S ∩ B
percolation and two values of ps(=0.80 and 0.85). As it
can be observed from Figure 3, (a) for a given value of ps,
curves corresponding to different sizes cross each other
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Fig. 4. a) ln
(
∆A

L

)
as a function of ln(L). According to

equation (1) the slope corresponds to −1/ν. b) ln
(

dRA

dpb

)

max

as a function of ln(L). The slope corresponds to 1/ν.

in a unique universal point, RX∗
, which depends on the

criterion X used and (b) those points are located at very
well defined values in the pb-axes determining the critical
percolation threshold for each ps.

According to the theoretical prediction in reference [2],
the critical exponent ν is determined from the divergence
of the root mean square deviation of the threshold ob-
served from their average values, ∆X

L ,

∆X
L ∝ L−1/ν. (1)

As an example of the validity of the last equation, Fig-
ure 4a shows ∆A

L as a function of L (note the log-log scale)
for ps = 0.8. According to equation (1), the slope of the
line corresponds to −1/ν, being ν = 1.38(6) in this exam-
ple.

Another alternative way for evaluating ν is given
through the scaling relationship for RX

RX = RX
[
(pb − pc

b)L1/ν
]
, (2)

being RX(u) the scaling function. Then, the maximum of
the derivative of equation (2) leads to

(
dRX

dpb

)

max
∝ L1/ν .

In Figure 4b we have plotted
(

dRA

dpb

)

max
as a function

of L (note the log-log scale) for different ps = 0.8, whose
slope corresponds to 1/ν. In this case, ν = 1.36(4). By
using both procedures for different values of ps and the I,

Fig. 5. Extrapolation of pc
b towards the thermodynamic limit

according to the theoretical prediction given by equation (3).
Circles, squares and triangles denote the values of pc

b(L) ob-
tained by using the criteria I , A and U , respectively.

U , A criteria, it can be concluded that the results obtained
for ν support the idea that the problem belongs to the
same universality class as the random percolation.

Once ν is known, equation (2) allow for a efficient
route to estimate pc

b from the extrapolation of the po-
sitions pcX

b (L) of the maxima of the slopes of RX(L). For
each criterion one expects that [2],

pc
b
X(L) = pc

b + AXL−1/ν (3)

where AX is a non-universal constant. Figure 5 shows the
extrapolation towards the thermodynamic limit of pc

b
X(L)

according to equation (3) for different criteria. This figure
lends support to the assertion given by equation (3): (a)
all the curves are well correlated by a linear function, (b)
they have a quite similar value for the ordinate in the
limit L → ∞ and (c) the fitting determines a different
value of the constant A depending of the type of criterion
used. It is also important to note that pc

b
A(L) gives an

almost perfect horizontal line which is a great advantage
of the method because it does not require precise values
of critical exponent ν in the process of estimating percola-
tion thresholds. The maximum of the differences between
|pc

b
I(∞)−pc

b
A(∞)| and |pc

b
U (∞)−pc

b
A(∞)| gives the error

bar for each determination of pc
b.

The scaling law hypothesis also predicts the collapsing
of the curves RX

L (pb) when they are plotted as a function
of a reduced variable u = (pb − pc

b)L1/ν , see equation (2).
Thus, RX is a universal function with respect to the vari-
able u. In Figure 6a this fact is shown for dimers at con-
centration ps = 0.7 and different values of L as indicated.
However, in Figure 6b, RA is plotted as a function of u
for each value of ps as indicated (each value of ps is repre-
sented by using a different symbol). Similar behavior can
be obtained for U and I criteria. Two main conclusions
can be drawn from the figure. Namely, a) for a given value
of ps, all the curves used in the experiment (for different
values of L) collapse into an universal curve according to
the theoretical prediction. This gives an additional proof
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Fig. 6. a) Collapsing plot of the curves for the fraction of
percolating samples as a function of u = (pb − pc

b) L1/ν for
ps = 0.7. Each symbol denotes a different value of L as indi-
cated. b) For each ps, all the studied lattice sizes (L = 16,
32, 48, 64, 80, 96 and 112) collapse onto a universal curve. The
solid lines are simply a guide for the eye. c) The probability RA

as a function of the argument u′ = (pb − pc
b)L1/νpθ

s where the
metric factor pθ

s is included in order to collapse all the curves
in Figure 6b onto a single one.

for the numerical value of the critical exponent ν. b) RX

is not only a function of pb and L but also of ps. As it
can be seen, the collapsing function is different for each
value of ps considered. This fact determines that the scal-
ing function RX is not an universal function with respect
to the variable ps.

In order to determine the dependence of RX with ps,
the main features of the data shown in Figure 6b have
to be considered. As it can be seen, the curves become
more steeper upon increasing the value of ps. In fact, the
derivative of the universal function RX with respect to u
become more pronounced as ps increases. Then, it is pos-
sible to establish a power law to describe this behavior:(

∂RX

∂u

)

max
= Bpλ

s . On the other hand, the derivatives are
narrowed upon increasing ps. This behavior can also be
described by a power law according to ∆X = Cp−θ

s , be-
ing ∆X the root mean square deviation of

(
∂RX

∂u

)
for each

curve.

The maxima of the derivatives (the standard deviation
of each derivative) for each value of ps as a function of ps

can be plotted in a log-log scale (not shown here). The
points are very well correlated by a linear function with
the fitting parameters λ = 2.03(2) and θ = 1.98(2) and
λ = 1.45(2) and θ = 1.43(2) for monomers and dimers,
respectively. The number between parenthesis is the er-
ror in the determination of the corresponding informed
quantities.

According to the equations above, a metric factor
might to be included in the scaling function, equation (2),
in order to collapse all the curves in Figure 6b onto
a single one. Following reference [39], in Figure 6c we
plot the probability RX as a function of the argument
u′ = (pb − pc

b) L1/νpθ
s. As it is clearly observed, all the

curves in Figure 6b collapse onto a single one. It is re-
markable that more than 6 × 103 points are included in
the collapsing curve. The metric factor introduced here,
pθ

s, gives an additional proof for the numerical value of
the exponent θ obtained from the behavior of ∆X(ps). A
completely similar procedure can be done whether pb is
kept fixed while ps is varied in the whole range.

4 Phase diagram

The finite-size scaling analysis has been used in the whole
range of the variables ps and pb in order to determine
the percolation thresholds and the phase diagram in the
case of dimers. Thus, the resulting ps − pb phase diagram
for dimer site-bond percolation (full symbols) is shown in
Figure 7, in comparison with the standard site-bond per-
colation for monomers (empty symbols). In the last case,
the excellent agreement between our data and previous
studies [15,16] (small full squares) supports the applica-
bility of the method used in the present paper.

The main characteristics of the new phase diagram
are: 1) the critical curve corresponding to S ∩ B model
varies between the point [pj

s = 0.907(3), pb = 0.546(2)]
at left and the point [ps = 0.647(2), pj

b = 0.863(2)] at
right, where pj

s = 0.907(3) [pj
b = 0.863(2)] represents the

jamming coverage for site [bond] dimers on square lat-
tice; 2) the critical curve corresponding to S ∪ B model
varies between the point [pc

s = 0.562(3), pb = 0.0] at left
and the point [ps = 0.0, pc

b = 0.464(2)] at right, where
pc

s = 0.562(3) [pc
b = 0.464(2)] represents the threshold

percolation for site [bond] dimers on square lattice; and 3)
the areas of the percolating and non-percolating regions
diminish with respect to the corresponding ones for stan-
dard site-bond percolation. Thus, the percolating (non-
percolating) area changes from 0.1228 (0.2421) for stan-
dard site-bond percolation to 0.0450 (0.1951) for dimer
site-bond percolation. Then, the effect of dimer site-bond
percolation is more pronounced in the case of S∪B model
in comparison with the S ∩ B scheme.

5 Conclusions

In this work, the phase diagram of the site-bond perco-
lation problem for dimers is addressed. The influence of
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Fig. 7. Phase diagram of dimer site-bond percolation in com-
parison with the standard site-bond percolation phase diagram
on square lattices.

the local correlation introduced by the dimers is more pro-
nounced in the case of S∪B model in comparison with the
S ∩B scheme. The jamming coverage, as it was discussed
in the text, fix the limits of the phase diagram curve in the
case of S ∩ B. The percolation thresholds for site (bond)
dimers on square lattice denote the limits in the case of
S ∪ B.

In order to test the universality of the problem, the
phase transition involved on it has been studied by us-
ing finite-size scaling theory. In particular, it was estab-
lished that (a) if pb (ps) remains constant the scaling func-
tions are dependent with respect to the coordinate ps (pb)
and (b) the problem, in all the studied cases, belongs to
the random percolation universality class. The last conclu-
sion can be also confirmed by determining the numerical
values of the critical exponents, and the fractal dimension
of the spanning cluster.

Finally, the present study encourage us to determine
the phase diagram of the site-bond percolation when the
size of the percolating species is increased. This work is in
progress.

The authors are thankful to Professor G. Zgrablich for the
critical reading of the manuscript. This work was made pos-
sible by CONICET (Argentina), the Universidad Nacional de

San Luis (Argentina) under project 322000 and FUNDACIÓN
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